Behavioural Contracts for
Components

Cyril Carrez
01/03/2004

NTNU

Design by Assembly

Components

ADL (90's) CoTs
— components
— connectors

— configuration

UML 2.0 (2003)

Classification
[Medvidovic & Taylor]

Behavioural typing with explicit types
— Regular types [Nierstrasz]
— «non understood message» [Najm et al.]
Contracts Application
: I
— Design by Contract [Meyer]
— Classification [Beugnard et al.]

= Syntactic / behaviour (pre/post) / synchronisation / QoS
01/03/2004

Behavioural Contracts for Components

Framework of the study

1: open

- Components 2: read/write
— specification + code 3: close

m Non uniform services
m Dynamic links

Objectives

m Safety properties: no external deadlock
m Liveness properties: messages will be consumed

01/03/2004 Behavioural Contracts for Components

Roadmap

m The approach

m Interface language

s Component semantics

m Contract respect

m Sound assembly

m Conclusion & Perspectives

01/03/2004 Behavioural Contracts for Components

Approaches: Darwin, Wright,...

Analysis
of the global
behaviour

01/03/2004 Behavioural Contracts for Components

Our approach

Sound assembly

Interface

Interface Contract:\/
: /
(J

Contract:\/

Compatible
Interfaces : ?

Contract:\/

01/03/2004 Behavioural Contracts for Components

Our approach

Sound assembly

v
Interface Contract:\/
; /
(J

Contract:\/

Behavioural

Contract:\/ properties

01/03/2004 Behavioural Contracts for Components

()
Interface types: example

reviewer_access
(Name, Passwd, NumArticle)

> Conference
PR refused ________ Manager

—|— granted (form)
<

review (...)

=

01/03/2004 Behavioural Contracts for Components

Bl

Interface types: example

g of type
reviewer_access access_manager
(Name, Passwd, NumArticle)
>

PR refused _______.

Reviewer granted (form)

reviewer (r)
review (...)

s

01/03/2004 Behavioural Contracts for Components

Example:
Type access_manager

m access_manager =

may ? [reviewer_access (string,string,integer);
must![refused; 0

+ granted (strings);

must ? [review (strings); must! [Ok;
+ error;

may ? [review (strings); must![Ok;
+ error;

01/03/2004 Behavioural Contracts for Components

Example:
Type access_manager

m accessyymanager =
[reviewer_access (string,string,integer);
must ! [refused; O

\+ granted (strings); reviewer_manager]]

You must send obligation: I must send

m reviewey manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
= reviewer_manager_chg =
[review (strings); must![Ok; reviewer_manager_chg
+ error; reviewer_manager_chg]]

01/03/2004 Behavioural Contracts for Components

L

0
Compatibility: Comp (1, J)

must ? must ! may !

\/
v v

mod; ? [Z; M;; J;1) =gef

Comp,,.4(mod,; ?)
A (Al Comp . (M;) A Comp(1,J;))

Comp,,.(My(J;)) =gt Mi=Mq A Vi,].<J.

l

01/03/2004 Behavioural Contracts for Components

0
Compatibility: Comp (1, J)

must ?

must!

may !

must ?

.\/

may ?

\/

\/

must !

may !

0

m reviewer_manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
reviewer_manager_chg = may ? [...]
m enter_review =
must ! [review (strings); must? [Ok; O
+ error; enter_review]]

01/03/2004 Behavioural Contracts for Components

L

0
Compatibility: Comp (1, J)

must ?

must!

may !

must ?

\/

may ?

.\/

\/

must !

may !

0

m reviewer_manager =
must ? [review (strings); reviewer_manager_chg
reviewer_manager]]
reviewer_manager_chg = may ? [...]
m enter_review =
must ! [review (strings); must ? [Ok; O
+ error; enter_review]]

01/03/2004 Behavioural Contracts for Components

L

0
Compatibility: Comp (1, J)

must ?

may ?

must!

may !

must ?

.\/

\/

\/

may ?

.\/
must ! v
.\/

may !

m reviewer_manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
reviewer_manager_chg = may ? [...]
m enter_review =
must ! [review (strings); must ? [Ok;
+ error; enter_review]]

01/03/2004 Behavioural Contracts for Components

[

Subtyping: T=<S

Compatibility: sent message < received message
receivings:

— mod? M+M+M; < mod? M+M,

— contra-variant: M (I) < < J< 1

sendings:

— mod! M; < mod! M,+M,
— Cco-variant: M((I) <
modalities:

— may ? < must ?
— must! < may!

= [<

—may?<0
— 0 < may!

— may ? < may !

01/03/2004 Behavioural Contracts for Components

0
Properties of the subtypes

m < |s transitive
m Subtype can replace super-type
—Comp(L,S) &(T<S) = Comp(ILT)
m Greater compatible super-type:
— dual: JD=Glef J with reversed sendings and receivings
—Comp(LJ) < I<J°
m Demonstrations
— by induction on the structure of the types

01/03/2004 Behavioural Contracts for Components

Component model

partner

’{@@@@@ / unidrectiona

1
1
:
1
i bidirectional client-server
l link
1
1
1
1
:
1

ﬁpeer-te-peer
link

0 .

01/03/2004 Behavioural Contracts for Components

Component model

G

partner

ports (C,) = Z/
{ (U—o.1), (V—o W), (C—05%) }

ae(o)o]
G

01/03/2004 Behavioural Contracts for Components

Component model

references

i ports (C;) =

i { (u—ol), (v—ow), (c —0s*) }
o W ©®
% cj refs(C;) ={u,v,w,c s*}

01/03/2004 Behavioural Contracts for Components

Component model: ports

m Model based on observation of ports
m State of a port : up°

. a U isactive
— o = activity =<'s v is suspended
[u isidle

s Example:
— u 7@ = active in u 's = suspended in

01/03/2004 Behavioural Contracts for Components

Component model: threads

m Multi-threaded components

m Dependencies between ports: x>—y
- adcltivity of x is suspended until y terminates or becomes
idle
m A thread is a chain (head, gueue)
— head: current active port,
— qgueue: ordered sequence of suspended ports
— can dynamically grow/diminish

01/03/2004 Behavioural Contracts for Components

Component model: threads

m Multi-threaded components

m Dependencies between ports: x>—y
— adcltivity of x is suspended until y terminates or becomes
idle
m A thread is a chain (head, gueue)
— head: current active port,
— qgueue: ordered sequence of suspended ports
— can dynamically grow/diminish

01/03/2004 Behavioural Contracts for Components

Component semantic

= Component: B(P,R, T)
[N

state ports, references, threads
async. com.:

Fifo queues

m Operational semantic
- B(P,RT), Com —— B'(P', R, T, Com’
m 11 Rules:
— creation / removal of ports
— binding
— (de)activation of ports (idle, active, suspended)
— sending/receiving messages

01/03/2004 Behavioural Contracts for Components

Example: RECV
for Reviewer component

granted (...)
ports: P={(r —og)} ports = { (r —@}
refs: R= {r, g} - 15

Reviewer

(a)granted 2. reviewer (r)

T = Tlup/u? R = RuU {refs(0). u”} — {u'l{u —o u') A peer(u))
{'_-'._r;lrlrll'r == (_-'r,lj'j,?ér.-’jé}‘é P'll p— P.',' —0O ”'”E tﬂ [){-4‘\1*[i l

-'-'
wen PN

B(P.R.T), Com B' (PR, T, Com'

Some other rules

P'=Plu —o v

bind{u—ou)

C-BIND a

B(P,R.T).Com B'(P'.R,T),Com

A veR A (peer(t-‘) = v C-'oDom(P)}

-only sending ports, not suspended
-peer reference is attached to 1 port

T = Tlu— v]
C-ACTN

T(w) =1 Al T(v) = !i|

actv {w—w)

B(P,R.T).Com B'(P,R,T"),Com

-a port cannot suspend on a receiving port

C-SEND R' =R — peer(? U {u}) T = Tlup/u!] Com' = Com[u’ au: M (D)]

B(P,R,T),Com “*™M©), pip R Ty, Com’

-peer reference is private: known only to the partner
01/03/2004 Behavioural Contracts for Components

Component and contracts

m Contractual component: B(...),C
— correct behavi~our

C—=C B(..)—=B(.)

B(..), C—““ 5 B(..), C’

— unauthorized transition
C—+—>C B(.)——>B(.)

B(...), C—="- Error

— missing required transition
C—2=C B(.)—=B(.)

B(...),C—==-> Error

mod (&) = must

01/03/2004 Behavioural Contracts for Components

Example: RECV
for Reviewer component

r:a?granted (...) |
ports ={ (r—og)} | ports={(r—o a)}
refs = {r, g} refs = {r, a}

/ /v/r:must![...] |

»>a.must?[.]

must![..]
+ refused; 0]
g : must![granted (...);
must ? [...]
+ refused; 0]

r: must 7 [granted(...); /

Some other rules

a) . . bindi u—o)])
v B(P.R,T) Dindiu—en), B/(P",R,T)
bind(u—ew)

~ (B'(P",R,T),C)

w:T _ _
BIND Comp(T, S)

(B(P,R.T),C)

bind{u—ow)

u:T v: 8 B(P,R,T)

o » B'(P",R,T)
BIND-ERR —— ——
(B(P,R, T).C)— Error

- Comp(T. S)

wrt’ Ty,

w:T = mod ?[*|My vk, B(P.R, T) ——= B'(P',R",T")

RECV-ERR — —
(B(P,R, T),C)— Error

winTmy

w:T=mod ? Mz B(P.R,T) - B'(P",R",T')
uinTmy

RECV-tovnrnenon—n —on b bonon 66 0 ——————MM8M ——————
(B(P.R.T),C) —% (B'(P",R, T'), Clu: Ty /T| <= pu": TP f: Uy

AN(u— 1)

-RECV from unknown partner: take the greater type

01/03/2004 Behavioural Contracts for Components

Sound assembly of components

s Component honouring a contract
— Bis well-typed: B(P,R,T),CN never leads to Error

m Assembly of components:
A={ (B,P,R,,T).C), .., B,P,R .T)C,), Com}

— reference closed
— only client/server and peer-to-peer bindings
— all ports are active and independent
m Sound assembly:
— all components respect their contract
— ports bound to each other are compatible

01/03/2004 Behavioural Contracts for Components

Properties

Soundness is maintained through evolution
— a sound configuration of components never leads to Error

YC:A—*C, C—* Error

All the messages are eventually consumed
. vIM
Vuv,iM: (u—v)€P,, C — C’

= 3 C”,C”” such that C'——=* C"—~

M

01/03/2004 Behavioural Contracts for Components

External deadlock

m During assembly : no verification of the global
behaviour
— u and u'types are compatible
— vand v'types are compatible

m During execution :

is suspended by (

01/03/2004 Behavioural Contracts for Components

External deadlock

m During assembly : no verification of the global
behaviour
— u and u'types are compatible
— vand v'types are compatible

m During execution :

is suspended by (

01/03/2004 Behavioural Contracts for Components

Property:
external deadlock freeness

m A port cannot suspend on a receiving port

— external deadlock:

~—usSv =def U >Vv V u--->v (--->external dependency)

— Ext_deadlock (C) =,.;
d(u;,), ,€C suchthatVk<n: wSu,, n u,Su,

m Demonstration (deadlock freeness):
— by induction & Reductio ad absurdum

01/03/2004 Behavioural Contracts for Components

Constraints on the component

a port cannot suspend on a receiving port:
) ()

t .
u'a il) u's —>y?a is not allowed
- _ J
actv(u=v) v:..IM(..)

) s)
yla %{us)eva}% ylis — y?a is allowed
N J N J
a receiving port cannot be suspended: u?s forbidden
bindings: only sending & (active or idle) ports: u!a:
a ‘'must ! is not suspended by a ‘may ?’
unbind is not allowed
m [nonrentrant servers]

01/03/2004 Behavioural Contracts for Components

Application

m Sound extension of running application

Interface Interface 4
Behaviour < = Behaviour

Interface

Behaviour

01/03/2004 Behavioural Contracts for Components

Conclusion

Interface Interface
Behaviour <1 S Behaviour

_

m Contract conformance: verification during compilation
n Compatible interfaces: <€—» verification during deployment

m Properties of a sound assembly
— safety: a configuration never leads to Error
— safety: external deadlock freeness
— liveness: all sent message are eventually consumed

01/03/2004 Behavioural Contracts for Components

Perspectives

Interfaces: infinite state machines
Integration to existing component platforms
UML Profile

Composite components & delegation:

o

L

01/03/2004 Behavioural Contracts for Components

Future Work

o A_pplication to UML2.0: multiple delegation

m Application to a language
m From interface contracts to component contracts
m Extension to timed interfaces

Get the slides!

www.cyril-carrez.net

m Application to PATS!! www.item.ntnu.no/~carrez

01/03/2004 Behavioural Contracts for Components

