
Behavioural Contracts forBehavioural Contracts for

ComponentsComponents

CyrilCyril Carrez Carrez

01/03/200401/03/2004

NTNUNTNU

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 22

Design by AssemblyDesign by Assembly

!! ADL (90's)ADL (90's)

–– componentscomponents

–– connectorsconnectors

–– configurationconfiguration

!! UML 2.0 (2003)UML 2.0 (2003)

Classification

[Medvidovic & Taylor]

Application

COTS

Components

!! Behavioural typing with explicit typesBehavioural typing with explicit types
–– Regular types [Regular types [NierstraszNierstrasz]]

–– ««non understood messagenon understood message»» [[NajmNajm et al.] et al.]

!! ContractsContracts
–– Design by Contract [Meyer]Design by Contract [Meyer]

–– Classification [Beugnard et al.]Classification [Beugnard et al.]

!! Syntactic / Syntactic / behaviour behaviour (pre/post) / (pre/post) / synchronisation synchronisation // QoS QoS

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 33

Framework of the studyFramework of the study

!! ComponentsComponents

–– specification + codespecification + code

!! Non uniform servicesNon uniform services

!! Dynamic linksDynamic links

ObjectivesObjectives

!! Safety properties: no external deadlockSafety properties: no external deadlock

!! Liveness properties: messages will be consumedLiveness properties: messages will be consumed

1: open

2: read/write

3: close

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 44

RoadmapRoadmap

!! The approachThe approach

!! Interface languageInterface language

!! Component semanticsComponent semantics

!! Contract respectContract respect

!! Sound assemblySound assembly

!! Conclusion & PerspectivesConclusion & Perspectives

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 55

Approaches: Darwin, Wright,Approaches: Darwin, Wright,……

Analysis

of the global

behaviour

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 66

Our approachOur approach

Interface

Interface Contract:!

Contract:!

Contract:!

Compatible

Interfaces :

Sound assembly

?

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 77

Our approachOur approach

Behavioural

properties

Interface

Interface Contract:!

Contract:!

!
Compatible

Interfaces :

Sound assembly

Contract:!

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 88

Interface types: exampleInterface types: example

Reviewer

Articles

Manager:
user

database

Conference

Manager

reviewer_access
 (Name, Passwd, NumArticle)

Ok

granted (form)

review (…)

refused

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 99

Interface types: exampleInterface types: example

r

Manager

e

g

e'

Reviewer

a Article

reviewer (r)

g of type
access_managerreviewer_access

 (Name, Passwd, NumArticle)

Ok

granted (form)

review (…)

refused

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1010

Example:Example:

Type access_managerType access_manager

!! access_manageraccess_manager ==

 may ? [may ? [reviewer_access (string,string,integer)reviewer_access (string,string,integer);;

 must ! [must ! [refusedrefused; ; 00

 + + granted (strings)granted (strings); ; reviewer_managerreviewer_manager]]]]

!! reviewer_managerreviewer_manager ==

 must ? [must ? [review (strings)review (strings); must ! [; must ! [OkOk; ; reviewer_manager_chgreviewer_manager_chg

 + + errorerror;; reviewer_managerreviewer_manager]]]]

!! reviewer_manager_chgreviewer_manager_chg ==

 may ? [may ? [review (strings)review (strings); must ! [; must ! [OkOk; ; reviewer_manager_chgreviewer_manager_chg

 + + errorerror; ; reviewer_manager_chgreviewer_manager_chg]]]]

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1111

Example:Example:

Type access_managerType access_manager

!! access_manageraccess_manager = =

 may ? [may ? [reviewer_access (string,string,integer)reviewer_access (string,string,integer);;

 must ! [must ! [refusedrefused; 0; 0

 + + granted (strings)granted (strings); reviewer_manager; reviewer_manager]]]]

!! reviewer_managerreviewer_manager = =

 must ? [must ? [review (strings)review (strings); must ! [; must ! [Ok Ok; reviewer_manager_chg; reviewer_manager_chg

 + + errorerror; reviewer_manager; reviewer_manager]]]]

!! reviewer_manager_chgreviewer_manager_chg = =

 may ? [may ? [review (strings)review (strings); must ! [; must ! [Ok Ok; reviewer_manager_chg; reviewer_manager_chg

 + + errorerror; reviewer_manager_chg]]; reviewer_manager_chg]]

allowed: you can send, I guarantee the reception

obligation: I must sendYou must send

may ?may ?

must !must !

must ?must ?

may ?may ?

must !must !

must !must !

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1212

Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

IJ

Comp(modI ! [!k Mk ; Ik], modJ ? [!l Ml ; Jl]) =def

 Compmod (modI !, modJ ?)
" (#k, $l : Compmsg(Mk, Ml) " Comp(Ik, Jl))

Compmsg(M! (Ii), M?(Ji)) =def M! = M? " #i, Ii ! Ji

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1313

Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

!! reviewer_manager =reviewer_manager =

 must ? [must ? [review (strings)review (strings);; must ! [must ! [Ok Ok; ; reviewer_manager_chgreviewer_manager_chg

 + + errorerror; ; reviewer_manager reviewer_manager]]]]

 reviewer_manager_chg = reviewer_manager_chg = may ? [may ? [……]]

!! enter_review =enter_review =

 must ! [must ! [review (strings)review (strings);; must ? [must ? [OkOk; 0; 0

 + + errorerror;; enter_review enter_review]]]]

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1414

Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

!! reviewer_manager =reviewer_manager =

 must ? [must ? [review (strings)review (strings); ; must ! [must ! [Ok Ok;; reviewer_manager_chgreviewer_manager_chg

 + + errorerror;; reviewer_manager reviewer_manager]]]]

 reviewer_manager_chg = reviewer_manager_chg = may ? [may ? [……]]

!! enter_review =enter_review =

 must ! [must ! [review (strings)review (strings); ; must ? [must ? [OkOk;; 0 0

 + + errorerror;; enter_review enter_review]]]]

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1515

Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

!! reviewer_manager =reviewer_manager =

 must ? [must ? [review (strings)review (strings); must ! [; must ! [Ok Ok; ; reviewer_manager_chgreviewer_manager_chg

 + + errorerror; ; reviewer_manager reviewer_manager]]]]

 reviewer_manager_chg = reviewer_manager_chg = may ? [may ? [……]]

!! enter_review =enter_review =

 must ! [must ! [review (strings)review (strings); must ? [; must ? [OkOk; ; 00

 + + errorerror;; enter_review enter_review]]]]

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1616

Subtyping: Subtyping: T T ""SS

!! Compatibility: sent message Compatibility: sent message "" received message received message

!! receivings:receivings:
–– modmod ?? MM11++MM22++MM33 "" modmod ? ? MM11++MM22

–– contra-variant: contra-variant: MM ((II)) "" MM ((JJ)) %% JJ "" II

!! sendings:sendings:
–– modmod ! ! MM11 "" modmod ! ! MM11++MM22

–– co-variant: co-variant: MM ((II)) "" MM ((JJ)) %% I I "" JJ

!! modalities:modalities:
–– may ?may ? "" must ?must ?

–– must !must ! "" may !may !

–– may ? may ? "" 0 0

–– 0 0 "" may !may !

–– may ? may ? "" may !may !

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1717

Properties of the subtypesProperties of the subtypes

!! "" is transitive is transitive

!! Subtype can replace super-typeSubtype can replace super-type

–– CompComp ((I, S) I, S) && ((TT "" SS)) && Comp Comp ((I; T I; T))

!! Greater compatible super-type:Greater compatible super-type:

–– dual: dual: JJ = =defdef JJ with reversed with reversed sendings sendings and and receivings receivings

–– Comp Comp ((I, J I, J)) %% I I "" J J

!! DemonstrationsDemonstrations

–– by induction on the structure of the typesby induction on the structure of the types

D

D

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1818

Component modelComponent model

s*
s*

C2

peer-to-peer
link

bidirectional

w

w
v

C3

w
v

client-server
link

unidirectional
v c

u

u w c s*v

C1

partner

s*

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 1919

Component modelComponent model

w

ports (C1) =
 { (u), (v w), (c s*) }

port partner
port

partner

s*c

u

s*
u w c s*v s*

C1 C2

w
v

C3

w
v

v

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2020

refs (C1) = { u, v, w, c, s* }

references

Component modelComponent model

s*c

u

v s*
u w c s*v s*

C1 C2

w
v

C3

w
v

w

ports (C1) =
 { (u), (v w), (c s*) }

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2121

Component model: portsComponent model: ports

!! Model based on observation of portsModel based on observation of ports

!! State of a port : State of a port : uu''((

–– '' = action = = action =

–– ((= activity = = activity =

!! Example:Example:

–– u u ??aa = = activeactive in in receiving receiving uu !!ss = = suspendedsuspended inin sendingsending

! u is in a sending state

? u is in a receiving state
0 u has no action

a u is active
s u is suspended

i u is idle

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2222

Component model: threadsComponent model: threads

!! Multi-threaded componentsMulti-threaded components

!! Dependencies between ports: Dependencies between ports: x y x y
–– activity ofactivity of xx is suspended until is suspended until yy terminates or becomes terminates or becomes

idleidle

!! A thread is a chain A thread is a chain (head, queue)(head, queue)
–– head: head: current active portcurrent active port,,

–– queue: queue: ordered sequence of suspended portsordered sequence of suspended ports

–– can dynamically grow/diminishcan dynamically grow/diminish

u1!
s u2!

s un-1!
s un?

a

headqueue

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2323

Component model: threadsComponent model: threads

!! Multi-threaded componentsMulti-threaded components

!! Dependencies between ports: Dependencies between ports: x y x y
–– activity ofactivity of xx is suspended until is suspended until yy terminates or becomes terminates or becomes

idleidle

!! A thread is a chain A thread is a chain (head, queue)(head, queue)
–– head: head: current active portcurrent active port,,

–– queue: queue: ordered sequence of suspended portsordered sequence of suspended ports

–– can dynamically grow/diminishcan dynamically grow/diminish

u1!
s u2!

s un-1!
a

headqueue

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2424

Component semanticComponent semantic

!! Component: B (P, R, T)Component: B (P, R, T)

!! Operational semanticOperational semantic

–– B B (P, R, T), (P, R, T), Com Com B'B' (P', R', T'), (P', R', T'), Com'Com'

!! 11 Rules:11 Rules:

–– creation / removal of portscreation / removal of ports

–– bindingbinding

–– (de)activation of ports (idle, active, suspended)(de)activation of ports (idle, active, suspended)

–– sending/receiving messagessending/receiving messages

state ports, references, threads
async. com.:

Fifo queues

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2525

Example: RECVExample: RECV

for Reviewer componentfor Reviewer component

ports: P={(r g)}

refs: R= {r, g}

r ManagergReviewer

a Article

1. r : reviewer_access

g

r

2. reviewer (r)

ports = { (r a)}

refs = {r, a}

r : a ? granted (…)

a

3. a : granted

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2626

Some other rulesSome other rules

-only sending ports, not suspended

-peer reference is attached to 1 port

-a port cannot suspend on a receiving port

-peer reference is private: known only to the partner

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2727

Component and contractsComponent and contracts
Contract:)

~

B(...), C’B(...), C

a : *B’(...)B(...)C’C
a*

a :*

~ ~

~ ~

ErrorB(...), C

a : *B’(...)B(...)C’C
a

*

a :*

~ ~

~

ErrorB(...), C

a : *B’(...)B(...)C’C
a*

a :*

~ ~

~ mod (*) = must

!! Contractual component: B(Contractual component: B(……),C),C

–– correct behaviour correct behaviour

–– unauthorized transition unauthorized transition

–– missing required transition missing required transition

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2828

Example: RECVExample: RECV

for Reviewer componentfor Reviewer component

r : must ? [granted(…);
 must ! […]
 + refused; 0]
g : must ! [granted (…);
 must ? […]
 + refused; 0]

ports = { (r g)}
refs = {r, g}

r : must ! […]
a : must ? […]

ports = { (r a)}
refs = {r, a}

r : a ? granted (…)

Contract:)

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 2929

Some other rulesSome other rules
Contract:)

-RECV from unknown partner: take the greater type

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3030

Sound assembly of componentsSound assembly of components

!! Component honouring a contractComponent honouring a contract

–– B B is well-typed: is well-typed: B(P,R,T),C B(P,R,T),C never leads to never leads to ErrorError

!! Assembly of components:Assembly of components:

–– reference closedreference closed

–– only client/server and peer-to-peer bindingsonly client/server and peer-to-peer bindings

–– all ports are active and independentall ports are active and independent

!! Sound assembly:Sound assembly:

–– all components respect their contractall components respect their contract

–– ports bound to each other are compatibleports bound to each other are compatible

A = { (B1(P1,R1,T1),C1), ..., (Bn(Pn,Rn,Tn),Cn), Com }

~

~ ~

)

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3131

PropertiesProperties

Soundness is maintained through evolutionSoundness is maintained through evolution

–– a sound configuration of components never leads to a sound configuration of components never leads to ErrorError

C : A * C, C Error

All the messages are eventually consumedAll the messages are eventually consumed

u,v,i,M : (u v) + Pi , C C!
u:v ! M

& $ C!!,C!!! such that C! * C!! C!!!
v:u ? M

)

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3232

External deadlockExternal deadlock

!! During assembly : no verification of the globalDuring assembly : no verification of the global
behaviourbehaviour
–– uu and and u' u' types are compatibletypes are compatible

–– vv and and v' v' types are compatibletypes are compatible
u u'

v v'

u'u

v' v

!! During execution :During execution :

u u'

v v'

u'u

v' v

is suspended by

u !s

v ?a

u' ?a

v' !a

)

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3333

External deadlockExternal deadlock

!! During assembly : no verification of the globalDuring assembly : no verification of the global
behaviourbehaviour
–– uu and and u' u' types are compatibletypes are compatible

–– vv and and v' v' types are compatibletypes are compatible

!! During execution :During execution :

u u'

v v'

u'u

v' v

u u'

v v'

u'u

v' v

is suspended by

u !s

v ?a

u' ?a

v' !s
v' suspends on u'

)

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3434

Property:Property:

external deadlock freenessexternal deadlock freeness

!! A port cannot suspend on a receiving portA port cannot suspend on a receiving port

–– external deadlock:external deadlock:

–– (external dependency) (external dependency)

–– Ext_deadlock (Ext_deadlock (C C)) ==defdef

!! Demonstration (deadlock freeness):Demonstration (deadlock freeness):

–– by induction &by induction & ReductioReductio ad absurdum ad absurdum

u S v =def u v , u v

$ (ui)1..n + C such that # k < n : ui S ui+1 " un S u1

)

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3535

Constraints on the componentConstraints on the component

!! a port cannot suspend on a receiving port:a port cannot suspend on a receiving port:

– is not allowed

– is allowed

! a receiving port cannot be suspended: u?s forbidden

!! bindings: only sending & (active or idle) ports: bindings: only sending & (active or idle) ports: u!a,i

! a ‘must !’ is not suspended by a ‘may ?’

! unbind is not allowed

! [nonrentrant servers]

)

u!a u!s v?a

u!s v?au!s v!au!a

actv(u v)

actv(u v) v:..!M(..)

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3636

ApplicationApplication

!! Sound extension of running applicationSound extension of running application

Interface Interface

Behaviour Behaviour

Interface

Behaviour

!

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3737

ConclusionConclusion

!! Contract conformance:Contract conformance:

!! Compatible interfaces:Compatible interfaces:

!! Properties of a sound assemblyProperties of a sound assembly
–– safety: a configuration never leads to safety: a configuration never leads to ErrorError

–– safety: external deadlock freenesssafety: external deadlock freeness

–– liveness: all sent message are eventually consumedliveness: all sent message are eventually consumed

Interface Interface

Behaviour Behaviour

verification during compilation

verification during deployment

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3838

PerspectivesPerspectives

!! Interfaces: infinite state machinesInterfaces: infinite state machines

!! Integration to existing component platformsIntegration to existing component platforms

!! UML ProfileUML Profile

!! Composite components & delegation:Composite components & delegation:

A B

01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3939

Get the slides!

www.cyril-carrez.net

www.item.ntnu.no/~carrez

Future WorkFuture Work

!! Application to UML2.0: multiple delegationApplication to UML2.0: multiple delegation

!! Application to a languageApplication to a language

!! From interface contracts to component contractsFrom interface contracts to component contracts

!! Extension to timed interfacesExtension to timed interfaces

!! Application to PATS!!Application to PATS!!

S

TB

BA

TA

