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Design by AssemblyDesign by Assembly

!! ADL (90's)ADL (90's)

–– componentscomponents

–– connectorsconnectors

–– configurationconfiguration

!! UML 2.0 (2003)UML 2.0 (2003)

Classification

[Medvidovic & Taylor]

Application

COTS

Components

!! Behavioural typing with explicit typesBehavioural typing with explicit types
–– Regular types [Regular types [NierstraszNierstrasz]]

–– ««non understood messagenon understood message»» [ [NajmNajm et al.] et al.]

!! ContractsContracts
–– Design by Contract [Meyer]Design by Contract [Meyer]

–– Classification [Beugnard et al.]Classification [Beugnard et al.]

!! Syntactic / Syntactic / behaviour behaviour (pre/post) / (pre/post) / synchronisation synchronisation // QoS QoS



01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 33

Framework of the studyFramework of the study

!! ComponentsComponents

–– specification + codespecification + code

!! Non uniform servicesNon uniform services

!! Dynamic linksDynamic links

ObjectivesObjectives

!! Safety properties: no external deadlockSafety properties: no external deadlock

!! Liveness properties: messages will be consumedLiveness properties: messages will be consumed

1: open

2: read/write

3: close
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RoadmapRoadmap

!! The approachThe approach

!! Interface languageInterface language

!! Component semanticsComponent semantics

!! Contract respectContract respect

!! Sound assemblySound assembly

!! Conclusion & PerspectivesConclusion & Perspectives
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Approaches: Darwin, Wright,Approaches: Darwin, Wright,……

Analysis

of the global

behaviour
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Our approachOur approach

Interface

Interface Contract:!

Contract:!

Contract:!

Compatible

Interfaces :

Sound assembly

?
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Our approachOur approach

Behavioural

properties

Interface

Interface Contract:!

Contract:!

!
Compatible

Interfaces :

Sound assembly

Contract:!
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Interface types: exampleInterface types: example

Reviewer

Articles

Manager:
user

database

Conference

Manager

reviewer_access
       (Name, Passwd, NumArticle)

Ok

granted (form)

review (…)

refused
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Interface types: exampleInterface types: example

r

Manager

e

g

e'

Reviewer

a Article

reviewer (r)

g  of type
access_managerreviewer_access

       (Name, Passwd, NumArticle)

Ok

granted (form)

review (…)

refused
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Example:Example:

Type access_managerType access_manager

!! access_manageraccess_manager  ==

         may ? [          may ? [ reviewer_access (string,string,integer)reviewer_access (string,string,integer);;

                                                                    must ! [    must ! [    refusedrefused; ; 00

                                                                                              + + granted (strings)granted (strings); ; reviewer_managerreviewer_manager  ] ]] ]

!! reviewer_managerreviewer_manager  ==

        must ? [         must ? [ review (strings)review (strings);  must ! [;  must ! [      OkOk; ; reviewer_manager_chgreviewer_manager_chg

                                                                                                                    + + errorerror;;  reviewer_managerreviewer_manager  ] ]] ]

!! reviewer_manager_chgreviewer_manager_chg  ==

        may ? [         may ? [ review (strings)review (strings);   must ! [;   must ! [      OkOk; ; reviewer_manager_chgreviewer_manager_chg

                                                                                                                  + + errorerror; ; reviewer_manager_chgreviewer_manager_chg ] ] ] ]
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Example:Example:

Type access_managerType access_manager

!! access_manageraccess_manager = =

         may ? [          may ? [ reviewer_access (string,string,integer)reviewer_access (string,string,integer);;

                                                                    must ! [    must ! [    refusedrefused; 0; 0

                                                                                              + + granted (strings)granted (strings); reviewer_manager; reviewer_manager  ] ]] ]

!! reviewer_managerreviewer_manager = =

        must ? [         must ? [ review (strings)review (strings);  must ! [;  must ! [   Ok   Ok; reviewer_manager_chg; reviewer_manager_chg

                                                                                                                    + + errorerror; reviewer_manager; reviewer_manager  ] ]] ]

!! reviewer_manager_chgreviewer_manager_chg = =

        may ? [         may ? [ review (strings)review (strings);   must ! [;   must ! [   Ok   Ok; reviewer_manager_chg; reviewer_manager_chg

                                                                                                                  + + errorerror; reviewer_manager_chg ] ]; reviewer_manager_chg ] ]

allowed: you can send, I guarantee the reception

obligation: I must sendYou must send

may ?may ?

must !must !

must ?must ?

may ?may ?

must !must !

must !must !
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Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

IJ

Comp( modI ! [ !k Mk ; Ik ],  modJ ? [ !l  Ml ; Jl ] ) =def 

   Compmod ( modI !, modJ ? )
" ( #k, $l : Compmsg( Mk, Ml ) " Comp( Ik, Jl ) )

Compmsg( M! (Ii ), M?(Ji ) )  =def  M! = M?  "  #i, Ii ! Ji
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Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

!! reviewer_manager =reviewer_manager =

                must ? [ must ? [ review (strings)review (strings);;  must ! [  must ! [   Ok   Ok; ; reviewer_manager_chgreviewer_manager_chg

                                                                                                                      + + errorerror; ; reviewer_manager reviewer_manager ] ]] ]

   reviewer_manager_chg =    reviewer_manager_chg = may ? [may ? [……]]

!! enter_review =enter_review =

              must ! [ must ! [ review (strings)review (strings);; must ? [    must ? [   OkOk;  0;  0

                                                              +                                                               + errorerror;; enter_review  enter_review ] ]] ]
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Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

!! reviewer_manager =reviewer_manager =

        must ? [         must ? [ review (strings)review (strings);  ;  must ! [must ! [   Ok   Ok;;  reviewer_manager_chgreviewer_manager_chg

                                                                                                                      + + errorerror;;  reviewer_manager reviewer_manager ] ]] ]

   reviewer_manager_chg =    reviewer_manager_chg = may ? [may ? [……]]

!! enter_review =enter_review =

              must ! [ must ! [ review (strings)review (strings); ; must ? [   must ? [   OkOk;;  0  0

                                                                                                                            + + errorerror;; enter_review  enter_review ] ]] ]
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Compatibility: Compatibility: Comp (I, J)Comp (I, J)

!!!!must !must !

!!!!!!!!may ?may ?

!!must ?must ?

00may !may !must !must !may ?may ?must ?must ?

00

may !may !

!!!!

!!

!! reviewer_manager =reviewer_manager =

        must ? [         must ? [ review (strings)review (strings);  must ! [;  must ! [   Ok   Ok; ; reviewer_manager_chgreviewer_manager_chg

                                                                                                                      + + errorerror; ; reviewer_manager reviewer_manager ] ]] ]

      reviewer_manager_chg = reviewer_manager_chg = may ? [may ? [……]]

!! enter_review =enter_review =

              must ! [ must ! [ review (strings)review (strings); must ? [   ; must ? [   OkOk;  ;  00

                                                              +                                                               + errorerror;; enter_review  enter_review ] ]] ]
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Subtyping:  Subtyping:  T T ""SS

!! Compatibility:   sent message Compatibility:   sent message "" received message received message

!! receivings:receivings:
–– modmod  ??  MM11++MM22++MM33  ""  modmod ?  ? MM11++MM22

–– contra-variant:   contra-variant:   MM ( (II  ))  ""  MM ( (JJ  ))    %%  JJ  ""  II

!! sendings:sendings:
–– modmod  ! ! MM11  ""  modmod  ! ! MM11++MM22

–– co-variant:         co-variant:         MM ( (II  ))  ""  MM ( (JJ  ))    %%  I I ""  JJ

!! modalities:modalities:
–– may ?may ?  ""  must ?must ?

–– must !must !  ""  may !may !

–– may ? may ? "" 0 0

–– 0 0 ""  may !may !

–– may ? may ? ""  may !may !
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Properties of the subtypesProperties of the subtypes

!! "" is transitive is transitive

!! Subtype can replace super-typeSubtype can replace super-type

–– CompComp ( (I, S)  I, S)  &&  ( ( TT  ""  SS )      )     &&      Comp Comp ( ( I; T I; T ))

!! Greater compatible super-type:Greater compatible super-type:

–– dual: dual: JJ  =  =defdef  JJ   with reversed   with reversed sendings sendings and and receivings receivings

–– Comp Comp ( ( I, J I, J )  )  %%    I I "" J J

!! DemonstrationsDemonstrations

–– by induction on the structure of the typesby induction on the structure of the types

D

D
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Component modelComponent model

s*
s*

C2

peer-to-peer
link

bidirectional

w

w
v

C3

w
v

client-server
link

unidirectional
v c

u

u w c s*v

C1

partner

s*
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Component modelComponent model

w

ports (C1) = 
       { (u       ), (v     w), (c     s*) }

port partner
port

partner

s*c

u

s*
u w c s*v s*

C1 C2

w
v

C3

w
v

v
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refs (C1)   = { u, v, w, c, s* }

references

Component modelComponent model

s*c

u

v s*
u w c s*v s*

C1 C2

w
v

C3

w
v

w

ports (C1) = 
       { (u       ), (v     w), (c     s*) }
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Component model: portsComponent model: ports

!! Model based on observation of portsModel based on observation of ports

!! State of a port :  State of a port :  uu''((

–– ''   = action = = action =

–– (( = activity = = activity =

!!   Example:Example:

–– u u ??aa =  = activeactive  in in receiving receiving       uu  !!ss =  = suspendedsuspended  inin  sendingsending

!    u  is in a sending state

?   u  is in a receiving state
0   u  has no action

a     u  is active
s     u  is suspended

i      u  is idle
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Component model: threadsComponent model: threads

!! Multi-threaded componentsMulti-threaded components

!! Dependencies between ports: Dependencies between ports:  x     y x     y
–– activity ofactivity of  xx is suspended until  is suspended until yy terminates or becomes terminates or becomes

idleidle

!! A thread is a chain  A thread is a chain  (head, queue)(head, queue)
–– head:    head:    current active portcurrent active port,,

–– queue:  queue:  ordered sequence of suspended portsordered sequence of suspended ports

–– can dynamically grow/diminishcan dynamically grow/diminish

u1!
s        u2!

s       ..... un-1!
s        un?

a

headqueue
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Component model: threadsComponent model: threads

!! Multi-threaded componentsMulti-threaded components

!! Dependencies between ports: Dependencies between ports:  x     y x     y
–– activity ofactivity of  xx is suspended until  is suspended until yy terminates or becomes terminates or becomes

idleidle

!! A thread is a chain  A thread is a chain  (head, queue)(head, queue)
–– head:    head:    current active portcurrent active port,,

–– queue:  queue:  ordered sequence of suspended portsordered sequence of suspended ports

–– can dynamically grow/diminishcan dynamically grow/diminish

u1!
s        u2!

s       ..... un-1!
a

headqueue
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Component semanticComponent semantic

!! Component:      B (  P, R, T )Component:      B (  P, R, T )

!! Operational semanticOperational semantic

––     B     B (P, R, T), (P, R, T), Com Com                       B'B' (P', R', T'),  (P', R', T'), Com'Com'

!! 11 Rules:11 Rules:

–– creation / removal of portscreation / removal of ports

–– bindingbinding

–– (de)activation of ports (idle, active, suspended)(de)activation of ports (idle, active, suspended)

–– sending/receiving messagessending/receiving messages

state ports, references, threads
async. com.:

Fifo queues
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Example:  RECVExample:  RECV

for Reviewer componentfor Reviewer component

ports: P={(r      g )}

refs:   R= {r, g}

r ManagergReviewer

a Article

1. r : reviewer_access

g

r

2. reviewer (r )

ports = { (r      a )}

refs   = {r, a}

r : a ? granted (…)

a

3. a : granted
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Some other rulesSome other rules

-only sending ports, not suspended

-peer reference is attached to 1 port

-a port cannot suspend on a receiving port

-peer reference is private: known only to the partner
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Component and contractsComponent and contracts
Contract: )

~

B(...), C’B(...), C

a : *B’(...)B(...)C’C
a*

a :*

~ ~

~ ~

ErrorB(...), C

a : *B’(...)B(...)C’C
a

*

a :*

~ ~

~

ErrorB(...), C

a : *B’(...)B(...)C’C
a*

a :*

~ ~

~ mod (* ) = must

!! Contractual component:   B( Contractual component:   B(……),C),C

–– correct behaviour correct behaviour

–– unauthorized transition unauthorized transition

–– missing required transition missing required transition
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Example:  RECVExample:  RECV

for Reviewer componentfor Reviewer component

r : must ? [ granted(…);
                        must ! [ … ]
                 + refused; 0 ]
g : must ! [ granted (…);
                        must ? […]
               + refused; 0 ]

ports = { (r      g )}
refs   = {r, g}

r : must ! [ … ]
a : must ? […]

ports = { (r      a )}
refs   = {r, a}

r : a ? granted (…)

Contract: )
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Some other rulesSome other rules
Contract: )

-RECV from unknown partner: take the greater type
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Sound assembly of componentsSound assembly of components

!! Component honouring a contractComponent honouring a contract

–– B B is well-typed:  is well-typed:  B(P,R,T),C B(P,R,T),C  never leads to  never leads to ErrorError

!! Assembly of components:Assembly of components:

–– reference closedreference closed

–– only client/server and peer-to-peer bindingsonly client/server and peer-to-peer bindings

–– all ports are active and independentall ports are active and independent

!! Sound assembly:Sound assembly:

–– all components respect their contractall components respect their contract

–– ports bound to each other are compatibleports bound to each other are compatible

A = {  (B1(P1,R1,T1),C1), ..., (Bn(Pn,Rn,Tn),Cn), Com }

~

~ ~

)
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PropertiesProperties

Soundness is maintained through evolutionSoundness is maintained through evolution

–– a sound configuration of components never leads to  a sound configuration of components never leads to ErrorError

# C : A        * C,   C         Error

All the messages are eventually consumedAll the messages are eventually consumed

# u,v,i,M :  (u    v) + Pi , C              C! 
u:v ! M

& $ C!!,C!!! such that C!       * C!!              C!!!
v:u ? M

)
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External deadlockExternal deadlock

!! During assembly : no verification of the globalDuring assembly : no verification of the global
behaviourbehaviour
–– uu and  and u' u' types are compatibletypes are compatible

–– vv and  and v' v' types are compatibletypes are compatible
u u'

v v'

u'u

v' v

!! During execution :During execution :

u u'

v v'

u'u

v' v

is suspended by

u !s

v ?a

u' ?a

v' !a

)
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External deadlockExternal deadlock

!! During assembly : no verification of the globalDuring assembly : no verification of the global
behaviourbehaviour
–– uu and  and u' u' types are compatibletypes are compatible

–– vv and  and v' v' types are compatibletypes are compatible

!! During execution :During execution :

u u'

v v'

u'u

v' v

u u'

v v'

u'u

v' v

is suspended by

u !s

v ?a

u' ?a

v' !s
v' suspends on u'

)
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Property:Property:

external deadlock freenessexternal deadlock freeness

!! A port cannot suspend on a receiving portA port cannot suspend on a receiving port

–– external deadlock:external deadlock:

––                                                           (        external dependency)                                                          (        external dependency)

–– Ext_deadlock (Ext_deadlock (C C ) ) ==defdef

!! Demonstration (deadlock freeness):Demonstration (deadlock freeness):

–– by induction &by induction &  ReductioReductio ad absurdum ad absurdum

u S v =def u       v   ,  u        v

$ (ui)1..n + C  such that # k < n :    ui S ui+1  "  un S u1

)
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Constraints on the componentConstraints on the component

!! a port cannot suspend on a receiving port:a port cannot suspend on a receiving port:

–                                                                               is not allowed

–                                                                                                               is allowed

! a receiving port cannot be suspended: u?s forbidden

!! bindings: only sending & (active or idle) ports: bindings: only sending & (active or idle) ports: u!a,i

! a ‘must !’ is not suspended by a ‘may ?’

! unbind is not allowed

! [nonrentrant servers]

)

u!a u!s          v?a

u!s          v?au!s          v!au!a

actv(u    v)

actv(u    v) v:..!M(..)
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ApplicationApplication

!! Sound extension of running applicationSound extension of running application

Interface Interface

Behaviour Behaviour

Interface

Behaviour

!



01/03/200401/03/2004 Behavioural Contracts for ComponentsBehavioural Contracts for Components 3737

ConclusionConclusion

!! Contract conformance:Contract conformance:

!! Compatible interfaces:Compatible interfaces:

!! Properties of a sound assemblyProperties of a sound assembly
–– safety: a configuration never leads to safety: a configuration never leads to ErrorError

–– safety: external deadlock freenesssafety: external deadlock freeness

–– liveness: all sent message are eventually consumedliveness: all sent message are eventually consumed

Interface Interface

Behaviour Behaviour

verification during compilation

verification during deployment
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PerspectivesPerspectives

!! Interfaces: infinite state machinesInterfaces: infinite state machines

!! Integration to existing component platformsIntegration to existing component platforms

!! UML ProfileUML Profile

!! Composite components & delegation:Composite components & delegation:

A B
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Get the slides!

www.cyril-carrez.net

www.item.ntnu.no/~carrez

Future WorkFuture Work

!! Application to UML2.0: multiple delegationApplication to UML2.0: multiple delegation

!! Application to a languageApplication to a language

!! From interface contracts to component contractsFrom interface contracts to component contracts

!! Extension to timed interfacesExtension to timed interfaces

!! Application to PATS!!Application to PATS!!

S

TB

BA

TA


