Behavioural Contracts for
Components

Cyril Carrez

01/03/2004

O|NTNU

Design by Assembly

Components
= ADL (90's) cots
— components Classification
— connectors [Medvidovic & Taylor]
— configuration

= UML 2.0 (2003)

Behavioural typing with explicit types
— Regular types [Nierstrasz]

— «non understood message» [Najm et al.]
Contracts

— Design by Contract [Meyer]

— Classification [Beugnard et al.]
m Syntactic / behaviour (pre/post) / synchronisation / QoS

01/03/2004 Behavioural Contracts for Components

Framework of the study

s Components
— specification + code

m Non uniform services
m Dynamic links

Objectives

m Safety properties: no external deadlock
m Liveness properties: messages will be consumed

01/03/2004 Behavioural Contracts for Components

Roadmap

m The approach

m Interface language

s Component semantics

m Contract respect

m Sound assembly

m Conclusion & Perspectives

01/03/2004 Behavioural Contracts for Components

Approaches: Darwin, Wright,...

A

N
Analysis
H of the global
behaviour
01/03/2004 Behavioural Contracts for Components

Our approach

Sound assembly
Interface -
Interface Contract:V /
Compatible
Interfaces : ?
Contract:\/
Contract:\/

01/03/2004 Behavioural Contracts for Components

Our approach

v

Interface Contract

Sound assembly
Interface

\/

Contract: \/

Compatible
Interfaces :
ontract:\/

01/03/2004 Behavioural Contracts for Components

Behavioural
properties

(P]

Interface types: example

reviewer_access

(Name, Passwd, NumArticle)
4
PR refused _______.
granted (form)
review (...)
. >
Reviewer
Ok
<

Conference
Manager

anager:
user
database

01/03/2004 Behavioural Contracts for Components

()
Interface types: example

g of type
reviewer_access access_manager
(Name, Passwd, NumArticle)
>
DU refused .. g | Manager
N
granted (form) N e
l reviewer (r)
review (...)
Ok
\4
01/03/2004 Behavioural Contracts for Components 9
Example:

Type access_manager

m access_manager =
may ? [reviewer_access (string,string,integer);
must![refused; O
+ granted (strings); reviewer_manager]]

e

= reviewer_manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
= reviewer_manager_chg =
may ? [review (strings); must![OKk; reviewer_manager_chg
+ error; reviewer_manager_chg]]

01/03/2004 Behavioural Contracts for Components 10

Example:
Type access_manager

allowed: you can send, I guarantee the reception

| accesslmanager =

may ? [reviewer_access (string,string,integer);
must ! [refused; 0
\+ granted (strings); reviewer_manager]]

You must send obligation: I must send

= reviewey manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
= reviewer_manager_chg =
may ? [review (strings); must![Ok; reviewer_manager_chg
+ error; reviewer_manager_chg]]

01/03/2004 Behavioural Contracts for Components 11

Compatibility: Comp (1, J)

J I| must? may ? must ! may ! 0
must ? %

may ? v % % v
must ! v Vv

may ! %

(] Vv v

Comp(mod, V[Z, M, ; I,], mod; 2 [Z, M;; J;1) =gef

Comp, . (mod, !, mod,; ?)
A (Y, 3l Comp (M), M;) A Comp(1}, J;))

Compmsg(M| (Il), M';(Jl)) =def M| =M7 A Vl, Ils‘]l

01/03/2004 Behavioural Contracts for Components 12

Compatibility: Comp (1, J)

must ? may ? must ! may !
must ? v
may ? v % v
must ! v v
may ! %
0 v v

m reviewer_manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
reviewer_manager_chg = may ? [...]
m enter_review =
must ! [review (strings); must?[Ok; 0
+ error; enter_review]]

01/03/2004 Behavioural Contracts for Components 13

Compatibility: Comp (1, J)

must ? may ? must ! may !
must ? %
may ? v % %
must ! v Vv
may ! %
(] Vv v

m reviewer_manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
reviewer_manager_chg = may ? [...]
m enter_review =
must ! [review (strings); must? [Ok; 0
+ error; enter_review]]

01/03/2004 Behavioural Contracts for Components 14

Compatibility: Comp (1, J)

must ? may ? must ! may !
must ? v
may ? v % v
must ! v v
may ! %
0 v v

m reviewer_manager =
must ? [review (strings); must ! [Ok; reviewer_manager_chg
+ error; reviewer_manager]]
reviewer_manager_chg = may ? [...]
m enter_review =
must ! [review (strings); must?[Ok; 0
+ error; enter_review]]

01/03/2004 Behavioural Contracts for Components 15
(]
Subtyping: T=<S
m Compatibility: sent message < received message
m receivings:

- mod? M+M+M; < mod? M+M,
— contra-variant: M(I) < M(J) «J=<1I

m sendings:
— co-variant: M(I)sM(J) <I<]

m modalities:
-—-may?<must? -may?=<0 — may ? < may!
—must! <may! -0<may!

01/03/2004 Behavioural Contracts for Components 16

(e
Properties of the subtypes

m < |s transitive
m Subtype can replace super-type
—Comp(I,S) &(T<S) = Comp(ILT)
m Greater compatible super-type:
— dual: JD=def J with reversed sendings and receivings
—Comp(LJ) « I<J®
m Demonstrations
— by induction on the structure of the types

01/03/2004 Behavioural Contracts for Components

17

Component model

partner

client-server
link

peer -to-peer ’
link

"ﬂ@@ :

01/03/2004 Behavioural Contracts for Components

i bidirectional

18

Component model

ports (C;) =

{ (U—o_L), (v—o wJ>, (c—o %) }
@ ®]
C3

01/03/2004 Behavioural Contracts for Components 19

Component model

m

ports (Cy) =

{ (u—ol), (v—ow), (c —0s*) }
q ® @
CJ refs(C) ={u,v,w,c s*}

01/03/2004 Behavioural Contracts for Components 20

=
Component model: ports

m Model based on observation of ports
m State of a port : up°

_ I v isin asending state
— p = action =4 ? u isin a receiving state

0 u has no action

o a U isactive
— o = activity =<s v is suspended

i uisidle
s Example:
— u 7@ = active in receiving u!s = suspended in sending
01/03/2004 Behavioural Contracts for Components 21

Component model: threads

m Multi-threaded components

m Dependencies between ports: x>—y
— activity of x is suspended until y terminates or becomes
idle
m A thread is a chain (head, queue)
— head: current active port,
— queue: ordered sequence of suspended ports
— can dynamically grow/diminish

uls >—= uIsr— ... U, >>u,?
\ —— _
queue head

01/03/2004 Behavioural Contracts for Components 22

]
Component model: threads

m Multi-threaded components

m Dependencies between ports: x>—>y
- _adcltivity of x is suspended until y terminates or becomes
idle
m A thread is a chain (head, gueue)
— head: current active port,
— queue: ordered sequence of suspended ports
— can dynamically grow/diminish

Is Is Ja
Ul > Uz. D S Un 1
_ /]
Y
queue head
01/03/2004 Behavioural Contracts for Components

23

6}
Component semantic

= Component: B(P,R, T)
N

state ports, references, threads
async. com.:

Fifo queues

m Operational semantic
- B(P,R,T), Com —— B'(P", R, T, Com’
m 11 Rules:
— creation / removal of ports
— binding
— (de)activation of ports (idle, active, suspended)
— sending/receiving messages

01/03/2004 Behavioural Contracts for Components

24

Example: RECV
for Reviewer component

d (...
ports: P={(r —0g)} r@M ports = { (r —€a)}
refs: R={r, g} refs—=(r,ay

1. r : reviewer_access

» g |Manager

e granted 2. reviewer (I‘)

T = Tlup/u? R =RuU {refs(®) w”} — Lu'l(u —ou') A peer{u))
(_-'._r;lrlrll'r f— {/_-'r,lj'j,?;.-’fé:}_‘g P'll o P.’j —0 ”'”E tﬂ p[-vl‘[i l

i
wen P ()

BP.R.T).Com ———— B{(P . R.TY.Com'

Some other rules

P’ =Plu —o o]

C-BIND a

bind{u—ov)

B(P,R. T).Com

B'(P'.R,T),Com

O=(u— L) A|T(u) = A veR A (peer(t!) = v C-'oDoi-n{Pj}

-only sending ports, not suspended
-peer reference is attached to 1 port

T =Tlu— v]

actv {w—v)

C-ACTV T(u) =12 A| T(v) =1

B(P,R.T).Cam B'(P,R,T"),Com

-a port cannot suspend on a receiving port

R' =R — peer(v U {u}) T = Tlup/u!] Com' = Com[u' < u: M(0]]
w' M D) B,{

C-SEND JAN

B(P,R, T),Com P.R. T, Com’
-peer reference is private: known only to the partner
01/03/2004 Behavioural Contracts for Components 26

Contract: vV

Component and contracts

~nN

m Contractual component: B(...),C
— correct behaviour
C——=C B(.)—/=PB(.) a:a
B(..), C—““ 5 B(..), C’

— unauthorized transition
C—+>C BL)——=B(.) a:a

B(...), C—="- Error

— missing required transition
C—=C B(.)—=B(.)

B(...), C—=- Error

mod (&) = must

01/03/2004 Behavioural Contracts for Components

B Example: RECV
for Reviewer component

r: a?granted (...)
ports ={ (r—og)} ports = { (r—o a)}
refs = {r, g} refs = {r, a}

r: must ? [granted(...);
must![..]
+ refused; 0]
g: must! [granted (...);
must ? [...]

+ refused; 0]

r:must![..]
a:must?[..]

w:l = mod T My
u' 1" = mod" VM, B(P.R.T) ——& B'(P.R.T

(BP.R.T).C) I g0 R TPl 1)

— T AT e B e
e ju T =07 U)

Contract: vV

Some other rules

wT v:S B(P.RT) 2O prpr RT)
BIND — : Comp(T., 5)
(B(P,R.T),C) ——— (B'(P'.R,T).C)

bind{u—ou)
e

v:S B(P,R.T)
(B(P,R,T).C) — Error

o B'(P',R,T)
BIND-ERR

—Clomp(T. S)

w:T = mod 7[*¥]Ms Yk, B(P,R, T) 22/™, pr(p' R, T')

RECV-ERR -
(B(P,R,T),C) — Error

o w:T=mod? Mg B(P,R,T) 2™, p/(p! R, T')
RECV-UN AA(u—o 1)

(B(P,R,T),C) 2™ gi(p! R T"), Clu:Ti/T] <l T2 J5:)

-RECV from unknown partner: take the greater type

01/03/2004 Behavioural Contracts for Components 29

!

Sound assembly of components

m Component honouring a contract
— Bis well-typed: B(P,R,T),CN never leads to Error

m Assembly of components:
A={ (B,P,R,,T).C), .., B,P,R .T)C) Com}

— reference closed
— only client/server and peer-to-peer bindings
— all ports are active and independent
m Sound assembly:
— all components respect their contract
— ports bound to each other are compatible

01/03/2004 Behavioural Contracts for Components 30

!

Properties

Soundness is maintained through evolution
— a sound configuration of components never leads to Error

YC:A—*C, C—* Error

All the messages are eventually consumed
. uv!m
Y uv,i,M: (u—v)eP, C C’

= 3 C”,C”” such that C——+ ¢ ¢

01/03/2004 Behavioural Contracts for Components 31

!

External deadlock

m During assembly : no verification of the global
behaviour

— u and u'types are compatible 0@l
— vand v’ s are compatible
and v'type P -G

m During execution :

is suspended by (

01/03/2004 Behavioural Contracts for Components 32

T4

External deadlock

m During assembly : no verification of the global
behaviour

— u and u'types are compatible - - omn
— vand v'types are compatible o o

m During execution :
I?a

is suspended by ()v’suspends onu'
I !s

01/03/2004 Behavioural Contracts for Components 33

T Property:

external deadlock freeness

m A port cannot suspend on a receiving port

— external deadlock:

~—uSv ~def U >V V u--->v (--->external dependency)

— Ext_deadlock (C) =,
(), ,€C suchthatVk<n: wSu,, n u,Su,

m Demonstration (deadlock freeness):
— by induction & Reductio ad absurdum

01/03/2004 Behavioural Contracts for Components 34

yla

—

'

actv(u»v)

a port cannot suspend on a receiving port:

-

actv(u»v)

v...IM

I

yta

-

-

uts »—y?a

~

J

(.-)

J

be

[Epra_—

m [nonrentrant servers]

01/03/2004

-

uts >—> y?a

~N

)

Behavioural Contracts for Components

Constraints on the component

is not allowed

is allowed

a receiving port cannot be suspended: u?s forbidden
bindings: only sending & (active or idle) ports: ula/i

a ‘'must ! is not suspended by a ‘may ?’
unbind is not allowed

35

Application

m Sound extension of running application

Behaviour «—p/

!

)

01/03/2004

«—» Behaviour

Interface Interface
¢ P
\
Interface

o

<«—» Behaviour

Behavioural Contracts for Components

36

Conclusion

Interface Interface
Behaviour <= < > <4—p Behaviour
% \
m Contract conformance: <4— verification during compilation
[Compatible interfaces: <€+ yerification during deployment

m Properties of a sound assembly
— safety: a configuration never leads to Error
— safety: external deadlock freeness
— liveness: all sent message are eventually consumed

01/03/2004 Behavioural Contracts for Components 37

Perspectives

m Interfaces: infinite state machines

m Integration to existing component platforms
UML Profile

Composite components & delegation:

oG

01/03/2004 Behavioural Contracts for Components 38

Future Work

m Application to UML2.0: multiple delegation

m Application to a language
m From interface contracts to component contracts
m Extension to timed interfaces

m Application to PATS!!

01/03/2004 Behavioural Contracts for Components

