
Behavioural Contracts for

Components

Cyril Carrez

01/03/2004

NTNU

01/03/2004 Behavioural Contracts for Components 2

Design by Assembly

! ADL (90's)

– components

– connectors

– configuration

! UML 2.0 (2003)

Classification

[Medvidovic & Taylor]

Application

COTS

Components

! Behavioural typing with explicit types
– Regular types [Nierstrasz]

– «non understood message» [Najm et al.]

! Contracts
– Design by Contract [Meyer]

– Classification [Beugnard et al.]

! Syntactic / behaviour (pre/post) / synchronisation / QoS

01/03/2004 Behavioural Contracts for Components 3

Framework of the study

! Components

– specification + code

! Non uniform services

! Dynamic links

Objectives

! Safety properties: no external deadlock

! Liveness properties: messages will be consumed

1: open

2: read/write

3: close

01/03/2004 Behavioural Contracts for Components 4

Roadmap

! The approach

! Interface language

! Component semantics

! Contract respect

! Sound assembly

! Conclusion & Perspectives

01/03/2004 Behavioural Contracts for Components 5

Approaches: Darwin, Wright,…

Analysis

of the global

behaviour

01/03/2004 Behavioural Contracts for Components 6

Our approach

Interface

Interface Contract:!

Contract:!

Contract:!

Compatible

Interfaces :

Sound assembly

?

01/03/2004 Behavioural Contracts for Components 7

Our approach

Behavioural

properties

Interface

Interface Contract:!

Contract:!

!
Compatible

Interfaces :

Sound assembly

Contract:!

01/03/2004 Behavioural Contracts for Components 8

Interface types: example

Reviewer

Articles

Manager:
user

database

Conference

Manager

reviewer_access
 (Name, Passwd, NumArticle)

Ok

granted (form)

review (…)

refused

01/03/2004 Behavioural Contracts for Components 9

Interface types: example

r

Manager

e

g

e'

Reviewer

a Article

reviewer (r)

g of type
access_managerreviewer_access

 (Name, Passwd, NumArticle)

Ok

granted (form)

review (…)

refused

01/03/2004 Behavioural Contracts for Components 10

Example:
Type access_manager

! access_manager =

 may ? [reviewer_access (string,string,integer);

 must ! [refused; 0

 + granted (strings); reviewer_manager]]

! reviewer_manager =

 must ? [review (strings); must ! [Ok; reviewer_manager_chg

 + error; reviewer_manager]]

! reviewer_manager_chg =

 may ? [review (strings); must ! [Ok; reviewer_manager_chg

 + error; reviewer_manager_chg]]

01/03/2004 Behavioural Contracts for Components 11

Example:
Type access_manager

! access_manager =

 may ? [reviewer_access (string,string,integer);

 must ! [refused; 0

 + granted (strings); reviewer_manager]]

! reviewer_manager =

 must ? [review (strings); must ! [Ok; reviewer_manager_chg

 + error; reviewer_manager]]

! reviewer_manager_chg =

 may ? [review (strings); must ! [Ok; reviewer_manager_chg

 + error; reviewer_manager_chg]]

allowed: you can send, I guarantee the reception

obligation: I must sendYou must send

may ?

must !

must ?

may ?

must !

must !

01/03/2004 Behavioural Contracts for Components 12

Compatibility: Comp (I, J)

!!must !

!!!!may ?

!must ?

0may !must !may ?must ?

0

may !

!!

!

IJ

Comp(modI ! [!k Mk ; Ik], modJ ? [!l Ml ; Jl]) =def

 Compmod (modI !, modJ ?)
" (#k, $l : Compmsg(Mk, Ml) " Comp(Ik, Jl))

Compmsg(M! (Ii), M?(Ji)) =def M! = M? " #i, Ii ! Ji

01/03/2004 Behavioural Contracts for Components 13

Compatibility: Comp (I, J)

!!must !

!!!!may ?

!must ?

0may !must !may ?must ?

0

may !

!!

!

! reviewer_manager =

 must ? [review (strings); must ! [Ok; reviewer_manager_chg

 + error; reviewer_manager]]

 reviewer_manager_chg = may ? […]

! enter_review =

 must ! [review (strings); must ? [Ok; 0

 + error; enter_review]]

01/03/2004 Behavioural Contracts for Components 14

Compatibility: Comp (I, J)

!!must !

!!!!may ?

!must ?

0may !must !may ?must ?

0

may !

!!

!

! reviewer_manager =

 must ? [review (strings); must ! [Ok; reviewer_manager_chg

 + error; reviewer_manager]]

 reviewer_manager_chg = may ? […]

! enter_review =

 must ! [review (strings); must ? [Ok; 0

 + error; enter_review]]

01/03/2004 Behavioural Contracts for Components 15

Compatibility: Comp (I, J)

!!must !

!!!!may ?

!must ?

0may !must !may ?must ?

0

may !

!!

!

! reviewer_manager =

 must ? [review (strings); must ! [Ok; reviewer_manager_chg

 + error; reviewer_manager]]

 reviewer_manager_chg = may ? […]

! enter_review =

 must ! [review (strings); must ? [Ok; 0

 + error; enter_review]]

01/03/2004 Behavioural Contracts for Components 16

Subtyping: T "S

! Compatibility: sent message " received message

! receivings:
– mod ? M1+M2+M3 " mod ? M1+M2

– contra-variant: M (I) " M (J) % J " I

! sendings:
– mod ! M1 " mod ! M1+M2

– co-variant: M (I) " M (J) % I " J

! modalities:
– may ? " must ?

– must ! " may !

– may ? " 0

– 0 " may !

– may ? " may !

01/03/2004 Behavioural Contracts for Components 17

Properties of the subtypes

! " is transitive

! Subtype can replace super-type
– Comp (I, S) & (T " S) & Comp (I; T)

! Greater compatible super-type:

– dual: J =def J with reversed sendings and receivings

– Comp (I, J) % I " J

! Demonstrations

– by induction on the structure of the types

D

D

01/03/2004 Behavioural Contracts for Components 18

Component model

s*
s*

C2

peer-to-peer
link

bidirectional

w

w
v

C3

w
v

client-server
link

unidirectional
v c

u

u w c s*v

C1

partner

s*

01/03/2004 Behavioural Contracts for Components 19

Component model

w

ports (C1) =
 { (u), (v w), (c s*) }

port partner
port

partner

s*c

u

s*
u w c s*v s*

C1 C2

w
v

C3

w
v

v

01/03/2004 Behavioural Contracts for Components 20

refs (C1) = { u, v, w, c, s* }

references

Component model

s*c

u

v s*
u w c s*v s*

C1 C2

w
v

C3

w
v

w

ports (C1) =
 { (u), (v w), (c s*) }

01/03/2004 Behavioural Contracts for Components 21

Component model: ports

! Model based on observation of ports

! State of a port : u'(

– ' = action =

– (= activity =

! Example:

– u ?a = active in receiving u !s = suspended in sending

! u is in a sending state

? u is in a receiving state
0 u has no action

a u is active
s u is suspended

i u is idle

01/03/2004 Behavioural Contracts for Components 22

Component model: threads

! Multi-threaded components

! Dependencies between ports: x y
– activity of x is suspended until y terminates or becomes

idle

! A thread is a chain (head, queue)
– head: current active port,

– queue: ordered sequence of suspended ports

– can dynamically grow/diminish

u1!
s u2!

s un-1!
s un?

a

headqueue

01/03/2004 Behavioural Contracts for Components 23

Component model: threads

! Multi-threaded components

! Dependencies between ports: x y
– activity of x is suspended until y terminates or becomes

idle

! A thread is a chain (head, queue)
– head: current active port,

– queue: ordered sequence of suspended ports

– can dynamically grow/diminish

u1!
s u2!

s un-1!
a

headqueue

01/03/2004 Behavioural Contracts for Components 24

Component semantic

! Component: B (P, R, T)

! Operational semantic

– B (P, R, T), Com B' (P', R', T'), Com'

! 11 Rules:

– creation / removal of ports

– binding

– (de)activation of ports (idle, active, suspended)

– sending/receiving messages

state ports, references, threads
async. com.:

Fifo queues

01/03/2004 Behavioural Contracts for Components 25

Example: RECV
for Reviewer component

ports: P={(r g)}

refs: R= {r, g}

r ManagergReviewer

a Article

1. r : reviewer_access

g

r

2. reviewer (r)

ports = { (r a)}

refs = {r, a}

r : a ? granted (…)

a

3. a : granted

01/03/2004 Behavioural Contracts for Components 26

Some other rules

-only sending ports, not suspended

-peer reference is attached to 1 port

-a port cannot suspend on a receiving port

-peer reference is private: known only to the partner

01/03/2004 Behavioural Contracts for Components 27

Component and contracts
Contract:)

~

B(...), C’B(...), C

a : *B’(...)B(...)C’C
a*

a :*

~ ~

~ ~

ErrorB(...), C

a : *B’(...)B(...)C’C
a

*

a :*

~ ~

~

ErrorB(...), C

a : *B’(...)B(...)C’C
a*

a :*

~ ~

~ mod (*) = must

! Contractual component: B(…),C

– correct behaviour

– unauthorized transition

– missing required transition

01/03/2004 Behavioural Contracts for Components 28

Example: RECV
for Reviewer component

r : must ? [granted(…);
 must ! […]
 + refused; 0]
g : must ! [granted (…);
 must ? […]
 + refused; 0]

ports = { (r g)}
refs = {r, g}

r : must ! […]
a : must ? […]

ports = { (r a)}
refs = {r, a}

r : a ? granted (…)

Contract:)

01/03/2004 Behavioural Contracts for Components 29

Some other rules
Contract:)

-RECV from unknown partner: take the greater type

01/03/2004 Behavioural Contracts for Components 30

Sound assembly of components

! Component honouring a contract

– B is well-typed: B(P,R,T),C never leads to Error

! Assembly of components:

– reference closed

– only client/server and peer-to-peer bindings

– all ports are active and independent

! Sound assembly:

– all components respect their contract

– ports bound to each other are compatible

A = { (B1(P1,R1,T1),C1), ..., (Bn(Pn,Rn,Tn),Cn), Com }

~

~ ~

)

01/03/2004 Behavioural Contracts for Components 31

Properties

Soundness is maintained through evolution

– a sound configuration of components never leads to Error

C : A * C, C Error

All the messages are eventually consumed

u,v,i,M : (u v) + Pi , C C!
u:v ! M

& $ C!!,C!!! such that C! * C!! C!!!
v:u ? M

)

01/03/2004 Behavioural Contracts for Components 32

External deadlock

! During assembly : no verification of the global
behaviour
– u and u' types are compatible

– v and v' types are compatible
u u'

v v'

u'u

v' v

! During execution :

u u'

v v'

u'u

v' v

is suspended by

u !s

v ?a

u' ?a

v' !a

)

01/03/2004 Behavioural Contracts for Components 33

External deadlock

! During assembly : no verification of the global
behaviour
– u and u' types are compatible

– v and v' types are compatible

! During execution :

u u'

v v'

u'u

v' v

u u'

v v'

u'u

v' v

is suspended by

u !s

v ?a

u' ?a

v' !s
v' suspends on u'

)

01/03/2004 Behavioural Contracts for Components 34

Property:
external deadlock freeness

! A port cannot suspend on a receiving port

– external deadlock:

– (external dependency)

– Ext_deadlock (C) =def

! Demonstration (deadlock freeness):

– by induction & Reductio ad absurdum

u S v =def u v , u v

$ (ui)1..n + C such that # k < n : ui S ui+1 " un S u1

)

01/03/2004 Behavioural Contracts for Components 35

Constraints on the component

! a port cannot suspend on a receiving port:

– is not allowed

– is allowed

! a receiving port cannot be suspended: u?s forbidden

! bindings: only sending & (active or idle) ports: u!a,i

! a ‘must !’ is not suspended by a ‘may ?’

! unbind is not allowed

! [nonrentrant servers]

)

u!a u!s v?a

u!s v?au!s v!au!a

actv(u v)

actv(u v) v:..!M(..)

01/03/2004 Behavioural Contracts for Components 36

Application

! Sound extension of running application

Interface Interface

Behaviour Behaviour

Interface

Behaviour

!

01/03/2004 Behavioural Contracts for Components 37

Conclusion

! Contract conformance:

! Compatible interfaces:

! Properties of a sound assembly
– safety: a configuration never leads to Error

– safety: external deadlock freeness

– liveness: all sent message are eventually consumed

Interface Interface

Behaviour Behaviour

verification during compilation

verification during deployment

01/03/2004 Behavioural Contracts for Components 38

Perspectives

! Interfaces: infinite state machines

! Integration to existing component platforms

! UML Profile

! Composite components & delegation:

A B

01/03/2004 Behavioural Contracts for Components 39

Get the slides!

www.cyril-carrez.net

www.item.ntnu.no/~carrez

Future Work

! Application to UML2.0: multiple delegation

! Application to a language

! From interface contracts to component contracts

! Extension to timed interfaces

! Application to PATS!!

S

TB

BA

TA

